Shik-v-dom.ru

Шик в Дом
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Искусственные источники света: виды, особенности, сфера использования

Источник света — это любой объект, который излучает электромагнитные волны, воспринимаемые человеческим глазом. Свет не только дает возможность получать зрительную информацию, он — пусковой механизм многих процессов. В солнечных батареях свет с помощью фотоэлемента преобразуется в электрический ток. В растениях световые волны запускают химические реакции и участвуют в фотосинтезе.

По происхождению различают искусственные и естественные источники света. В природе можно встретить разные объекты, способные светиться.

Космические тела: Солнце, звезды, кометы.

Атмосферные явления: молнии, северное сияние.

Представители растительного и животного мира (насекомые, морские организмы).

Северное сияние

Искусственный свет – результат человеческой деятельности.

По характеру все световые источники разделяют на люминесцирующие (холодные) и тепловые. В первой группе – светлячки, гниющая древесина, люминесцентные лампы. Для объектов второго типа видимый спектр излучения – лишь способность, сопутствующая выделению тепла. В числе таковых пламя, Солнце, звезды, лампы накаливания и др.

Источники электрического тока Выполнил: Рубцов Антон ученик 8 Б класса МОУ СОШ № 105 Научный руководитель: Маслова Е. А. учитель физики

Выбор темы Я захотел изучить историю создания источников электрического тока, а также сделать некоторые источники своими руками, повторив опыты известных ученых. Актуальность Человечество не может существовать без электрической энергии и возможно кому то удастся открыть новые источники электрического тока более экономичные и менее затратные. Цель работы – изучение основных видов источников электрического тока, принципа их действия и изготовление источников своими руками. Задачи: 1. Рассмотреть основные виды источников электрического тока. 2. Изучить принцип действия источников тока. 3. Изготовить некоторые источники своими руками.

Основная часть Источник тока — это устройство, в котором происходит преобразование какого-либо вида энергии в электрическую энергию. В любом источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц, которые накапливаются на полюсах источника. Электрический ток — направленное (упорядоченное) движение заряженных частиц (электронов, ионов и др.) За направление тока принимают направление движения положительно заряженных частиц. Если ток создается отрицательно заряженными частицами (например, электронами), то направление тока считают противоположным направлению движения частиц.

История создания первых источников тока

Свойства янтаря Впервые на электрический заряд обратил внимание Фалес Милетский. Он обнаружил, что янтарь, потёртый о шерсть, приобретает свойства притягивать мелкие предметы. Окаменелая смола древних деревьев которые росли на нашей планете 38-120 млн лет назад.

Электрическая машина Отто фон Герике Отто фон Герике придумал первую электрическую машину. Он налил расплавленную серу внутрь полого стеклянного шара, а затем, когда сера затвердела, разбил стекло. Затем Герике укрепил серный шар так, чтобы его можно было вращать рукояткой. Для получения заряда надо было одной рукой вращать шар, а другой — прижимать к нему кусок кожи. Трение поднимало напряжение шара до величины, достаточной, чтобы получать искры длиной в несколько сантиметров.

Лейденская банка Лейденская банка представляет собой стеклянную бутылку, с обеих сторон обвернутую фольгой. Внутри банки имеется металлический стержень. Подключенная обкладками к электрической машине банка могла накапливать значительное количество электричества. Если ее обкладки соединяли отрезком толстой проволоки, то в месте замыкания проскакивала сильная искра, и накопленный электрический заряд мгновенно исчезал. Так стало возможным получить кратковременный электрический ток. Затем банку надо было снова заряжать. Сейчас подобные приборы мы называем электрическими конденсаторами.

Элемент Гальвани Луиджи Гальвани (1737-1798) — один из основоположников учения об электричестве, его опыты с «животным» электричеством положили начало новому научному направлению — электрофизиологии. В результате опытов с лягушками Гальвани предположил существование электричества внутри живых организмов. В честь него был назван гальванический элемент – батарейка.

Вольтов столб Алесандро Вольта (1745 — 1827) — итальянский физик, химик и физиолог, изобретатель источника постоянного электрического тока. Его первый источник тока – «вольтов столб». Вольта положил друг на друга попеременно несколько десятков небольших цинковых и серебряных кружочков, проложив меж ними бумагу, смоченную подсоленной водой.

Основные виды источников электрического тока Механические Тепловые Световые Химические Термоэлемент Фотоэлемент Электрофорная машина Гальванический элемент

Источники тока животного происхождения

Электричество внутри живых организмов У многих растений возникают токи повреждений. Срезы листьев, стебля всегда заряжены отрицательно по отношению к нормальной ткани.

Животные, вырабатывающие электрический ток Электрический скат (до 220 В) Американский сомик (до 360 В) Угорь (до 1200 В)

Фрукты и овощи, вырабатывающие электрический ток. Фрукты и овощи можно разделить на изначально содержащие и приобретшие внутрищелочной или кислотный баланс в процессе окисления. К первым относятся цитрусовые (лимон) и картошка. А ко вторым, например соленый огурец и маринованный помидор.

Атмосферное электричество При движении воздуха воздушные различные потоки в результате соприкосновения электризуются. Одна часть облака (верхняя) электризуется положительно, а другая (нижняя) — отрицательно. В момент, когда заряд облака станет большим, между двумя его наэлектризованными частями проскакивает мощная электрическая искра – молния.

Самодельные батарейки Для изготовления самодельных батареек нам потребуются приборы и материалы: Медная пластинка Цинковая пластинка Лимон, огурец, сода, вода, монетки Вольтметр Соединительные провода

Гальванический элемент из лимона Вырабатывает электрический ток напряжением

Гальванический элемент из первого соленого огурца Вырабатывает электрический ток напряжением

Гальванический элемент из второго и третьего огурцов

Батарея из двух соленых огурцов Вырабатывает электрический ток напряжением

Батарея из трех соленых огурцов Вырабатывает электрический ток напряжением

Лампочка, включенная в цепь из трех соленых огурцов Собрали цепь Лампочка загорелась

Содовая батарейка Вырабатывает электрический ток напряжением

Содовая батарея из двух и трех элементов

Лампочка, включенная в цепь трех содовых элементов Собрали цепь Лампочка загорелась

Соленая батарейка Вырабатывает электрический ток напряжением

Заключение Для достижения цели данной работы я решил следующие задачи: Рассмотрел основные виды источников электрического тока. 1. Механические источники тока 2. Тепловые источники тока 3. Световые источники тока 4. Химические источники тока Изучил принцип работы источников тока. Изготовил некоторые источники своими руками. 1. Гальванический элемент из лимона. 2. Гальванический элемент из соленого огурца. 3. Содовую батарейку. 4. Соленую батарейку.

Читайте так же:
Подключение осветительного прибора от розетки

Библиография Абрамов С.С.. Большая энциклопедия Кирилла и Мифодия . 2009 Википедия – свободная энциклопедия. www . ru . wikipedia . org . Джулиан Холанд . Большая иллюстрированная энциклопедия эрудита. «Махаон» 2001г; Карцев В.П. Приключения великих уравнений. М.: Просвещение, 2007

Современные экспериментальные аккумуляторы

Хотя литиевые аккумуляторы и совершили огромный скачек в развитии за короткий период времени, характеристик, которые они предлагают все еще недостаточно. Поэтому, помимо развития существующих технологий, ученые активно исследуют новые типы аккумуляторов, экспериментируя с различными материалами. Основной целью этих исследований является кардинальный прорыв по таки параметрам, как удельная энергоемкость и дешевизна производства. Далее мы рассмотрим наиболее перспективные технологии, заслуживающие внимания.

Литий-воздушные аккумуляторы (Li-air)

Литий-воздушные батареи заимствуют идею от цинково-воздушных и топливных элементов в том, что они «дышат» воздухом. В батарее используется каталитический воздушный катод, который снабжается кислородом, а также литиевый анод и электролит. Ученые ожидают, что потенциал накопления энергии будет в 5-10 раз больше, чем у литий-ионных, но говорят, что до того, как технология станет коммерциализированной, потребуется один-два десятилетия. В зависимости от используемых материалов, Li-ion-air будет создавать напряжение в диапазоне от 1,7 до 3,2 В / элемент. IBM, Excellatron, Liox Power, Lithion-Yardney, Poly Plus, Rayovac и другие крупные компании разрабатывают эту технологию. Теоретическая удельная энергия лития-воздуха составляет 13 кВтч / кг; Алюминий-воздух обладает аналогичными качествами с теоретической удельной энергией 8 кВт / ч.

Литий-серные аккумуляторы (Li-S)

Благодаря низкому атомному весу лития и умеренному весу серы, литий-серные батареи обладают очень высокой удельной энергией — 550 Вт / ч, примерно в три раза больше, чем у литий-ионных, и удельным потенциалом — 2500 Вт / ч. , Во время разряда литий растворяется с поверхности анода и восстанавливается при зарядке путем нанесения покрытия на анод. Li-S имеет хорошие характеристики разряда при низких температурах и может заряжаться при температуре –60 ° C. Проблемы заключаются в ограниченном сроке службы, составляющем всего 40-50 зарядов / разрядов и нестабильности при высокой температуре. Li-S имеет напряжение ячейки 2,10 В и является экологически чистым. Сера как основной компонент доступна в изобилии.

Кремний-углеродные нанокомпозитные аноды для Li-ion

В отличие от углерода в качестве типичного материала анода в обычном литий-ионном элементе, исследователи разработали кремний-углеродный нанокомпозит. Это способствует доступу ионов лития для достижения стабильной производительности и увеличения емкости в пять раз по сравнению с обычным литий-ионным аккумулятором. Говорят, что производство простое и недорогое, а аккумулятор безопасен; однако срок службы ограничен из-за структурных проблем при введении и извлечении литий-иона в большом объеме.

Если подводить итоги, за последнее десятилетие не появилось не одной действительно прорывной технологии в сфере химических источников тока. Конечно, LiFePO4 и LTO совершили большой скачек, и по некоторым параметрам ушли далеко вперед от обычных Li-ion батарей, но все это не то что обещают громкие заголовки в СМИ, утверждающие что в скором времени та или иная технология позволит добиться многократного увеличения энергоемкости, в сравнении с существующими продуктами. На сегодняшний день Li-ion, LiFePO4 и LTO являются самыми прогрессивными типами аккумуляторов, и судя по всему в ближайшее время конкурентов у них не предвидится.

Закон Ома для полной цепи

В предыдущей статье я рассказал о законе Ома, который устанавливает зависимость между напряжением и током, протекающим через участок цепи. Однако при попытке его применить ко всей цепи, содержащей кроме сопротивления ещё и источник напряжения, приводит к неверным результатам, так как реальный источник напряжения, как мы знаем, имеет некоторое внутреннее сопротивление.

Закон Ома для полной цепи

Закон Ома для полной цепи.

Поэтому полное сопротивление цепи является суммой внутреннего сопротивления источника энергии RВН (обычно небольшого) и внешнего сопротивления нагрузки RН (практически всегда значительно большего, чем RВН), поэтому для полной цепи закон Ома будет иметь следующий вид

1701201701

Проанализировав данное выражение можно прийти к следующим практически выводам:

При подключении к источнику питания нагрузки, напряжение источника питания меньше его ЭДС, так как на внутреннем сопротивлении RВН источника питания происходит падение некоторого напряжения UВН

1701201702

Следовательно, при отключенной нагрузке напряжение источника питания будет равно ЭДС. Данное приложение используется для измерения ЭДС источников питания.

1701201703

измерение внутреннего сопротивления

Схема для измерения источника энергии.

В начале проводят замер ЭДС источника питания Е, путём размыкая ключа S1, затем замыкая ключ S1 замеряют протекающий по цепи ток I и напряжение источника питания под нагрузкой UH. Таким образом, вычисляют падение напряжения на внутреннем сопротивлении источника питания UВН. Тогда, величина внутреннего сопротивления RВН будет вычислена, как отношение внутреннего падения напряжения к протекающему в цепи току

1701201704

Например, при разомкнутом ключе S1 напряжение на выходе источника питания составило U = E = 1,5 В. При замыкании ключа S1 ток составил I = 0,18 А, а напряжение составило UH = 1,42 В. Тогда внутренне сопротивление RВН источника питания составит

1701201705

Химические источники электрической энергии

Химические источники электрической энергииХимическими источниками электрической энергии это устройства, превращающие химическую энергию какой-либо реакции в электрическую. Для такого превращения необходимо, чтобы процессы, связанные с изменением зарядов у электродов (т. е. окислительный и восстановительный процессы), были разделены пространственно, и электроны проходили через внешнюю цепь.

Примером подобного устройства может служить медно-цинко вый источник электрической энергии, предложенный Даниелем и Якоби в 1836 г. Медь, погруженная в раствор медного купороса, отделена диафрагмой от цинка, погруженного в раствор цинкового купороса:

При работе элемента цинк переходит в раствор, отдавая электроны: Zn → Zn 2+ + 2e. Электроны по внешней цепи проходят к меди, на медном электроде из раствора выделяется медь: Cu 2+ + 2e → Сu. Поток электронов, т. е. электрический ток во внешней цепи, может быть использован для работы, что и является целью применения ХИЭЭ. На цинковом электроде происходит реакция окисления, а на медном — реакция восстановления. Цинковый электрод несет отрицательный заряд, а медь — положительный. Химическая реакция, протекающая в медно-цинковом элементе, может быть записана следующим образом:

Читайте так же:
Свет выключатели без рук

В электротехнике условно принято считать направление электрического тока обратным направлению движения электронов во внешней цепи (рис 2, а). Анодом служит электрод, на котором идет окислительный процесс, катодом — электрод, на котором идет восстановление.

Для регенерации активных веществ можно после работы медно-цинкового элемента подвести к нему ток от внешнего источника электрической энергии. Направления движения ионов и электронов станут обратными (рис. 2,6). Следует отметить, что хотя окислительный и восстановительный процессы поменяются местами, знак заряда электродов сохранится (медь — плюс; цинк — минус).

Движения ионов и электронов при работе медно цинкового элементаЕсли бы мы не разделяли процессы на электродах пространственно, а, например, опустили палочку цинка в раствор медного купороса, то реакция все равно бы прошла, но химическая энергия процесса превратилась бы не в электрическую, а в тепловую и была бы истрачена на нагрев раствора. Количество тепла, которое выделяется при реакции, и количество электрической энергии, которое может быть от нее получено при пространственном разделении окислительного и восстановительного процессов, связаны между собой уравнением Гиббса —Гельмгольца.

Рис. 2. Схема движения ионов и электронов при работе медно цинкового элемента.

При работе элемента Даниеля — Якоби количество энергии, переходящей в электрическую, меньше величины теплового эффекта реакции. Элемент разогревается, и часть энергии теряется. Температурный коэффициент элемента Даниеля — Якоби равен —3,59 • 10 -4 в /град. Тепловой эффект реакции

равен ∆Н = —55 189 кал.

Известны элементы, у которых температурный коэффициент положителен, при работе они охлаждаются и поглощают тепло из внешней среды. Получаемое в них количество электрической энергии больше, чем соответствует расчету по формуле Томсона.

Химические источники электрической энергии бывают одноразового и многократного действия. ХИЭЭ одноразового использования называются первичными элементами, а многократного действия вторичными элементами или аккумуляторами. Иногда первичные элементы называют просто «элементами» или «гальваническими элементами». Аккумуляторами могут служить только такие химические источники электрической энергии, основные процессы в которых протекают обратимо.

Вещества, израсходованные в процессе протекания реакции, дающей электрическую энергию, должны регенерироваться при пропускании через разряженный аккумулятор электрического тока от постороннего источника электрической энергии. Направление тока внутри аккумулятора при заряде будет обратным имевшемуся при разряде, на отрицательном электроде реакция окисления заменяется реакцией восстановления, а на положительном электроде реакция восстановления заменяется реакцией окисления. Таким образом, в аккумуляторах запас химической энергии, истраченной на получение электрической энергии при разряде, возобновляется при заряде.

Так как напряжение одного отдельного первичного элемента или аккумулятора очень невелико— они в большинстве случаев применяются последовательно соединенными по несколько штук. В таком виде ХИЭЭ называют «батареей».

Электродвижущая сила и напряжение при разряде

Основной характеристикой химических источников электроэнергии является их электродвижущая сила, т. е. разность потенциалов электродов, измеренная при отсутствии тока во внешней цепи.

Для практики более важной величиной, чем э. д. с, является напряжение химического источника электрической энергии при замкнутой внешней цепи.

Напряжение при разряде меньше э. д. с. по двум причинам: во первых, потенциалы электродов при отборе тока .от ХИЭЭ заметно отличаются от тех, которые имеют место при разомкнутой внешней цепи и во-вторых, часть э. д. с. теряется на преодоление внутреннего сопротивления элемента. Это можно выразить формулой:

где φ a , φ к— потенциалы электродов при отборе тока; I — ток разряда; r — внутреннее омическое сопротивление ХИЭЭ; R — внешнее сопротивление (нагрузка) при разряде.

Потенциалы электродов при работе химического источника электрической энергии (разряде или заряде) отличаются от потенциалов, измеренных при разомкнутой внешней цепи, на величину, называемую э. д. с. поляризации:

где Епол — э. д. с. поляризации.

Внутреннее сопротивление ХИЭЭ

Напряжение при разряде (заряде), кроме поляризации электродов, зависит также от падения напряжения на преодоление внутреннего омического сопротивления ХИЭЭ. Последняя величина слагается из омического сопротивления проводников первого рода (электродов), электросопротивления электролита и сепараторов. При разряде малыми плотностями тока падение напряжения внутри ХИЭЭ не имеет значения, но при больших плотностях тока оно может оказаться заметным. Например, в свинцовом автомобильном аккумуляторе омическое сопротивление электролита и сепараторов при комнатной температуре приблизительно равно 0,006 ом на 1 дм 2 площади электродов. При плотности тока разряда 12 а/дм 2 падение напряжения составит около 70 мв, т. е. около 3,5% от э. д. с. аккумулятора.

На практике часто представляет интерес произвести приближенные расчеты напряжения при разряде в зависимости от нагрузки ХИЭЭ. Пользуются иногда условной величиной внутреннего сопротивления ХИЭЭ, характеризующей разницу между э. д. с. и напряжением при разряде, происходящую как от поляризации, так и от падения напряжения на преодоление внутреннего омического сопротивления. Тогда:

где V — напряжение, в; Е — электродвижущая сила, в; I— ток разряда, a; R — условное внутреннее сопротивление ХИЭЭ.

Величина К является грубо приближенной, так как омическая составляющая условного внутреннего сопротивления не зависит от нагрузки, а поляризация резко меняется при изменении плотности тока разряда. Величину К находят, производя несколько кратковременных разрядов ХИЭЭ различными токами и принимая среднюю величину. Внутреннее омическое сопротивление ХИЭЭ в принципе можно определить путем замеров переменным током, но, так как эта величина очень мала, результаты получаются ненадежными.

Для вычисления К существуют эмпирические формулы, однако они дают удовлетворительные результаты только в частных случаях. При точных расчетах пользоваться величиной К не рекомендуется, а необходимо произвести экспериментальное определение величины напряжения в зависимости от нагрузки ХИЭЭ.

Читайте так же:
Rj45 кабель цвета проводов

Емкость и энергия ХИЭЭ

Емкостью ХИЭЭ называют количество электричества, которое можно от него отобрать при разряде в определенных условиях. Для аккумуляторов различают емкость при разряде и при заряде. Емкостью при заряде называют количество электричества, которое требуется израсходовать при заряде аккумулятора в данных условиях.

Емкость при заряде, как правило, больше емкости при разряде, так как часть тока заряда теряется на побочные процессы. Емкость ХИЭЭ зависит от количества заложенных в них активных веществ и степени их использования. Использование активных материалов обычно тем лучше, чем ниже плотность тока разряда и чем выше температура. Повышение температуры имеет некоторый предел, выше которого нормальному использованию ХИЭЭ препятствуют усиливающиеся побочные процессы.

Энергия ХИЭЭ выражается произведением его емкости на среднее напряжение.

Для аккумуляторов отдачей по энергии η называют отношение энергии, отданной при разряде, к энергии, полученной при заряде.

Для сравнения различных типов ХИЭЭ пользуются удельными величинами: емкостью, энергией или мощностью, отнесенными к единице веса или объема ХИЭЭ.

Саморазряд и сохранность ХИЭЭ

Активные материалы ХИЭЭ частично расходуются и на бесполезные побочные процессы. К таким процессам относятся, например, утечки тока через случайные замыкания в ХИЭЭ, растворение электродов в элекролите и др.

Потери емкости, происходящие из-за вредных побочных процесс сов, называются саморазрядом, имеются некоторые специальные конструкции элементов, у которых саморазряд настолько велик, что электролит в них приходится заливать только перед самым на чалом работы. Например, в свинцово-цинковом элементе, приводи мом в действие путем заполнения раствором серной кислоты, бесполезно теряется при разряде 10—30% цинка, растворяющегося в серной кислоте с выделением водорода. Сохранность ХИЭЭ тесно связана с их саморазрядом. Сохранностью называют время, в течение которого ХИЭЭ годен к употреблению, т. е. сохраняет определенный запас электрической энергии.

Для аккумуляторов, кроме сохранности, важной характеристикой является также срок службы. Срок службы выражают либо во времени, в течение которого аккумулятор пригоден для разрядов и зарядов, либо в числе циклов заряда и разряда, в течение которых аккумулятор способен отдавать емкость не ниже предусмотренной для данного типа.

Применение химических источников электрической энергии и требования, предъявляемые к ним

Химические источники электрической энергии в настоящее время широко применяют в промышленности и быту. Это вызвано тем, что большое количество современных машин и аппаратов нуждается в автономных источниках электрической энергии, не связанных с неподвижными электрическими станциями.

Для промышленного применения ХИЭЭ должны обладать рядом свойств, редко встречающихся одновременно в одной системе. ХИЭЭ должны отвечать следующим требованиям:

1 ) иметь возможно большую э. д. с;

2) отдавать большие токи без резкого падения э. д. с, т. е. не сильно поляризоваться в процессе работы;

3) активные вещества должны иметь возможно малый эквивалентный вес и высокую степень использования;

4) обладать малым саморазрядом, хорошей сохранностью;

5) производство ХИЭЭ должно быть технологичным и доступным по цене.

Аккумуляторы, кроме того, должны иметь высокую отдачу по энергии и большой срок службы.

Выбор электрохимических систем для ХИЭЭ

Для получения ХИЭЭ с наибольшей э. д. с. следовало бы взять электроды, наиболее далеко отстоящие друг от друга в таблице стандартных потенциалов.

Очень высокой э. д. с. обладал бы элемент с электродами, изготовленными из лития и фтора, но осуществить его невозможно, так как эти вещества мгновенно вступают в реакции с водными растворами и водой.

В качестве материала для отрицательного электрода все щелочные металлы в чистом виде применить крайне трудно, так как они слишком энергично реагируют с водными растворами. При приведении в соприкосновение электродов из щелочных металлов с электролитом весь материал расходуется на химическую реакцию настолько быстро (со взрывом), что не удается отобрать во внешнюю цепь существенное количество электричества.

При замене водных растворов электролитов на неводные реакции щелочных металлов с электролитом замедляется, но соответственно снижается и электродный потенциал. Попытки использовать для отрицательного электрода магний или алюминий затруднены тем, что эти металлы находятся либо в пассивном состоянии и имеют потенциал значительно более положительный, чем соответствует стандартных потенциалов, либо при активации начинают слишком бурно реагировать с электролитом. Первичные элементы с электродами из магния все же удалось осуществить.

Наиболее распространены первичные элементы с отрицательным электродом из цинка. Применение цинка объясняется тем, что он не сильно поляризуется, дает хороший коэффициент использования металла и хорошо сохраняется.

Статья на тему Химические источники электрической энергии

Химические источники тока

Химические источники токаХимические источники тока

К химическим источникам тока причисляют гальванические элементы и аккумуляторы. Есть и другие химические источники тока, но они менее распространены. В обиходе гальванический элемент получил название батарейка. Это не совсем верное определение, так как батарейкой можно назвать несколько отдельных гальванических элементов соединённых вместе – это и есть батарея питания или батарейка.

На принципиальных схемах гальванический элемент обозначается так.

Так обозначают один гальванический элемент или один элемент аккумулятора.

Но поскольку номинальное напряжение на одном гальваническом элементе обычно не более 1,5 вольта, их соединяют в батареи питания. Батарея питания на принципиальной схеме обозначается вот так.

Здесь показано, что батарея питания состоит из двух отдельных гальванических элементов. Общее напряжение на полюсах этой составной батареи — 3 вольта из расчёта, что каждый из элементов имеет на полюсах напряжение 1,5 вольта. Также на схемах можно встретить и такое обозначение.

Это тоже условное изображение батареи питания или батарейки на принципиальной схеме, только здесь не уточняется, сколько именно гальванических элементов используется в батарее, а указано лишь общее напряжение на полюсах батареи.

Одиночный аккумуляторный элемент обозначается на схемах так же, как и отдельный гальванический элемент. Номинальное напряжение одного аккумуляторного элемента обычно составляет около 1,25 вольт. Чтобы получить аккумулятор с большим напряжением аккумуляторные элементы соединяют вместе – получается аккумуляторная батарея или просто аккумулятор. Обозначение аккумуляторной батареи на схемах такое же, как и батареи, составленной из гальванических элементов.

Читайте так же:
Расчет тока для кабеля 6кв

Чем гальванический элемент отличается от аккумулятора?

Дело в том, что гальванический элемент сам является источником постоянного тока, который образуется за счёт необратимой химической реакции. Гальванический элемент причисляют к первичным источникам тока.

Аккумулятор является так называемым вторичным источником тока. Почему? Потому, что перед тем, как использовать аккумулятор, его нужно предварительно зарядить от источника постоянного тока — зарядника. Только после полной зарядки аккумулятор сможет питать электронное устройство. Отличительным качеством аккумуляторов является то, что их можно заряжать и разряжать много раз. В отличие от аккумулятора, гальваническая батарея питания после своего полного разряда не может быть использована повторно.

Какие существуют батарейки?

Наибольшее распространение в настоящее время получили щелочные батареи питания. Их ещё называют алкалиновыми – производное от английского слова alkaline – «щелочь».

Работа щелочной батарейки основана на окислительно-восстановительной химической реакции между цинком и диоксидом марганца. Результатом, а точнее полезным продуктом этой реакции является электрический постоянный ток и тепло, которое не используется. Электрическая ёмкость щелочной батарейки составлет около 1700 — 3000 мАч. По величине своей ёмкости, щелочные батарейки лидируют по сравнению с солевыми батарейками, электроёмкость которых меньше и составляет 550 — 1100 мАч.

Щелочная батарейка устроена следующим образом. Взглянем на рисунок.

Корпусом элемента является никелированный стальной стакан. Он же является плюсовым контактом батарейки «+». Активная масса представляет собой смесь диоксида марганца (MnO2) и графита. Анодная паста – это смесь порошка цинка (Zn) и густого щелочного электролита. Электролитом обычно служит раствор гидроксида калия (KOH). Анодная паста отделена от активной массы сепаратором. Сепаратор разделяет реагенты, исключая их перемешивание и нейтрализацию заряда. Также сепаратор пропитан электролитом.

Отрицательный потенциал снимается с латунного стержня, который окружён анодной пастой. Стальная тарелка контактирует с латунным стержнем – токосъёмником и является отрицательным контактом элемента «».

Прокладка изолирует никелированный стальной стакан от стальной тарелки, препятствуя тем самым короткому замыканию. Кроме этого прокладка сдерживает давление газа, который в незначительном количестве образуется при химической реакции. В толще прокладки имеется защитный клапан или по-другому предохранительная мембрана. Защитный клапан служат для того, чтобы при чрезмерном давлении газа сработать и выпустить его наружу. Это предотвращает взрыв щелочного элемента, но и приводит к его разгерметизации. Как правило, разгерметизация приводит к течи электролита.

Иногда, забыв вынуть уже подсевшие батарейки, через некоторое время можно обнаружить, что в батарейном отсеке появилась какая-то жидкость. Это и есть потёкший электролит. Он может вызвать коррозию контактов. Поэтому на упаковке с батарейками можно найти предупреждение о том, что севшие элементы нужно вынимать из электроприборов. Теперь вы знаете, зачем это нужно делать.
Итак, с устройством разобрались, теперь поговорим о том, как работает щелочной элемент.

Как работает щелочной элемент.

Для начала, маленькое отступление…
Как вы заметили, почему то анодная паста соединяется с помощью токосъёмника с отрицательным контактом элемента – стальной тарелкой. А ведь анод – это «+». Получается нестыковочка…

В чём тут дело? А дело в том, что в электронике есть один каламбур. По умолчанию, за направление тока в электрической цепи считается направление от плюса (анода) к минусу (катоду) – так повелось ещё с тех времён, когда электроника ещё зарождалась.

Но ведь электрический ток, как известно, это упорядоченное движение электронов, которые имеют отрицательный заряд. И поэтому, ток течёт оттуда, где есть избыток электронов, в направлении, где есть нехватка отрицательных зарядов (это и есть плюс – недостаток электронов). При этом получается, что ток течёт в реальности от отрицательного контакта к положительному. Именно поэтому образуется эта нестыковка, которая порой вводит начинающих радиолюбителей в ступор.

В электрохимии анодом принято считать тот электрод, на котором происходит процесс окисления. Так вот в щелочной батарейке (и не только) на аноде в результате окисления образуется избыток электронов. То есть по сути – это катод, «минус». Но, как уже говорилось, в электрохимии всё наоборот. Итак, электроны вырабатываются анодной пастой – смесью цинкового порошка (Zn) и густого электролита (раствора KOH).

Катодом же считается электрод, где происходит реакция восстановления. Далее электроны, которые были получены в результате реакции окисления, проходят по электрической цепи электронного прибора, и возвращаются опять в батарейку, но уже на катод, где эти электроны используются для восстановительной химической реакции. Катод – это диоксид марганца. Токоприёмником катода служит никелированный стальной стакан, который контактирует с активной массой – диоксидом марганца (MnO2).

Вот такая игра в наоборот. Напомню ещё раз, что в электронике за направление тока в цепи считается направление от плюса-«анода» к минусу-«катоду». В электрохимии всё наоборот. С этим и связаны особенности в названии реагентов химического источника тока.

Можно ли заряжать батарейки?

"Пальчиковые" батарейки форм-фактора АА(LR6)Также часто можно слышать вопрос: «Можно ли заряжать батарейки?» Ответим: «Лучше не стоит». Дело в том, что для вырабатывания электрической энергии в батарейках используется необратимая химическая реакция. Поэтому батарейка и является первичным источникам тока.

А вот в аккумуляторах используется обратимая химическая реакция, которая позволяет заряжать и разряжать их множество раз. Поэтому аккумуляторы и называют вторичными источниками тока.

Несмотря на это, известно, что щелочные элементы допускают перезарядку, т.е. их можно зарядить и использовать повторно. Но такие, перезаряжаемые щелочные элементы имеют свою особую конструкцию. Также стоит отметить, что даже такие элементы нельзя перезаряжать много раз, обычно не более 25. В широкой продаже такие щелочные элементы не встречаются. Их маркируют как Rechargeable Alkaline Manganese.

Читайте так же:
Ap3041m g1 снизить ток подсветки

Из всего этого следует, что заряжать обычные щелочные батарейки категорически не стоит. Такие эксперименты могут завершиться взрывом батарейки и разбрызгиванием электролита. А это не есть гуд +опасно для здоровья .

Чтобы замедлить химическую реакцию в щелочном элементе и, тем самым, продлить срок её хранения и снизить саморазряд батареи, в них раньше добавляли кадмий и ртуть. Эти вещества замедляли химическую реакцию, и цинк окислялся медленнее. Но, из-за токсичности ртути и кадмия их сейчас не используют, а применяют другие, менее вредные ингибиторы.

На многих батарейках можно даже увидеть надпись – 0% кадмия и ртути или 0% Hg & Cd. Это своеобразный маркетинговый ход, как бы намекающий на то, что данные батарейки безопасны.

Если вы с успехом дошли до этих строк, то теперь вас можно поздравить, ведь теперь вы знаете, как устроена и работает щелочная батарейка. И поэтому её и не обязательно разбирать . Кроме щелочных элементов питания существуют и другие, но об их устройстве мы расскажем в другой раз.

Читайте также

Проблемы первого витка

Проблемы первого витка Итак, Юрий Гагарин сказал:«Поехали!» и махнул рукой. Что же произошло потом?Казалось, за эти годы о первом витке написано предостаточно.Но на самом деле многие подробности этого знаменитого полета до последнего времени скрывались от

Глава 4.1. РАСПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА НАПРЯЖЕНИЕМ до 1 кВ ПЕРЕМЕННОГО ТОКА и до 1,5 кВ ПОСТОЯННОГО ТОКА

Глава 4.1. РАСПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА НАПРЯЖЕНИЕМ до 1 кВ ПЕРЕМЕННОГО ТОКА и до 1,5 кВ ПОСТОЯННОГО ТОКА Область применения Вопрос. На какие РУ распространяется настоящая глава Правил?Ответ. Распространяется на РУ и НКУ напряжением до 1 кВ переменного тока и до 1,5 кВ

10.2. Воздействие электрического тока на человека

10.2. Воздействие электрического тока на человека Ток, проходящий через тело человека, действует на организм не только в местах контакта и путях протекания тока, но также и на кровеносную, дыхательную и сердечно-сосудистую системы.Виды травм, связанных с воздействием

1.2.3. Выбор источника питания и предупреждения по безопасности и перегрузкам

1.2.3. Выбор источника питания и предупреждения по безопасности и перегрузкам Для питания видеокамер следует использовать только стабилизированные блоки питания.Не рекомендуется применять простейшие импульсные блоки питания, поскольку они создают помехи в работе

Устройство нечеткой логики – система слежения за направлением источника света

Устройство нечеткой логики – система слежения за направлением источника света Сейчас мы приступим к изготовлению устройства – системы слежения за направлением источника света, использующего принцип нечеткой логики. Система отслеживает направление на источник света,

Список деталей для системы слежения за направлением источника света и демонстрационного нейрона

Список деталей для системы слежения за направлением источника света и демонстрационного нейрона • (2) CdS фотоэлемент• (1) датчик изгиба (номинальное сопротивление 10 кОм)• (2) конденсатор 0,22 мкФ• (1) конденсатор 0,01 мкФ• (4) транзистор NPN TIP 120 Darlington• (2) резистор 10 кОм• (б)

Глава 7 Работа электрического потенциального поля

Глава 7 Работа электрического потенциального поля Перейдем к рассмотрению устройств преобразования энергии, в которых, так или иначе, используется электрическое потенциальное поле. Начнем с электростатических моторов. Например, мотор Франклина, рис. 70, отлично

Глава 4.1. РАСПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА НАПРЯЖЕНИЕМ ДО 1 КВ ПЕРЕМЕННОГО ТОКА И ДО 1,5 КВ ПОСТОЯННОГО ТОКА

Глава 4.1. РАСПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА НАПРЯЖЕНИЕМ ДО 1 КВ ПЕРЕМЕННОГО ТОКА И ДО 1,5 КВ ПОСТОЯННОГО ТОКА Область применения Вопрос 1. На какие распределительные устройства распространяется настоящая глава Правил?Ответ. Распространяется на распределительные устройства

§ 1.4 Природа электрического отталкивания и закон Кулона

§ 1.4 Природа электрического отталкивания и закон Кулона Электрические заряды постоянно испускают во всех направлениях частицы, разлетающиеся с постоянной скоростью вдоль прямых линий. Воздействие на заряд зависит лишь от расположения и скорости этих частиц возле

Глава 15 Внутренняя структура электрического потенциального поля

Глава 15 Внутренняя структура электрического потенциального поля Эфир, как и любая физическая среда, существование которой мы можем принять, вместе с Менделеевым, имеет определенные физические свойства. Менделеев писал об упругости данной среды в статье «Попытка

ГЛАВА 3 Изобретение конденсатора и создание первого электрохимического источника тока – важнейшие страницы в летописи электричества

ГЛАВА 3 Изобретение конденсатора и создание первого электрохимического источника тока – важнейшие страницы в летописи электричества Создание лейденской банкиЭтот зимний день 1745 г. запомнился голландскому профессору из г. Лейдена Питеру Мюсхенбруку (1692-1761) на всю жизнь.

Предисловие От первого лица

Предисловие От первого лица …Я с юных лет получал великое наслаждение от всего, что касалось архитектуры… Андреа Палладио Цит. по: Палладио А. Четыре книги об архитектуре / пер. И. В. Жолтовского. М.: Изд-во Всесоюзной Академии архитектуры, 1936. С. 11. Эту книгу не стоит

2.3. ОБНАРУЖЕНИЕ И ИЗУЧЕНИЕ ДЕЙСТВИЯ ЭЛЕКТРИЧЕСКОГО ТОКА

2.3. ОБНАРУЖЕНИЕ И ИЗУЧЕНИЕ ДЕЙСТВИЯ ЭЛЕКТРИЧЕСКОГО ТОКА Первые же опыты с электрическим током[1] не могли не привести к открытию некоторых присущих ему свойств. Поэтому рассматриваемый период в истории электричества характеризуется главным образом обнаружением и

2.5. ВЗАИМОДЕЙСТВИЕ ЭЛЕКТРИЧЕСКОГО ТОКА И МАГНИТА

2.5. ВЗАИМОДЕЙСТВИЕ ЭЛЕКТРИЧЕСКОГО ТОКА И МАГНИТА Расширение и углубление исследований электрических явлений привели к открытию и изучению новых свойств электрического тока. О связи электрических и магнитных явлений говорили многие факты, наблюдавшиеся, в частности,

2.12. ПЕРВЫЕ ИСТОЧНИКИ ЭЛЕКТРИЧЕСКОГО ОСВЕЩЕНИЯ

2.12. ПЕРВЫЕ ИСТОЧНИКИ ЭЛЕКТРИЧЕСКОГО ОСВЕЩЕНИЯ В 40–70 гг. XIX в. стали создаваться первые источники электрического освещения. Освещение является естественной и постоянной потребностью человека. Самым долгим был путь от лучины к свече и затем к масляной лампе. В первой

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector