Shik-v-dom.ru

Шик в Дом
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как собрать стабилизатор тока на lm317 самостоятельно

Как собрать стабилизатор тока на lm317 самостоятельно

В наше время, когда технологические процессы разработки электроприборов стремительно совершенствуются, достаточно сложно обойтись без специального оборудования для подключения техники в домашних условиях. В стабилизации подачи электротока важную роль играет блок питания. Каждый любитель современных электронных приборов должен научиться самостоятельно собирать преобразователи.

Стабилизатор тока на lm317

Предлагаем подробно рассмотреть, как собрать стабилизатор тока на lm317 своими руками. Устройство имеет обширный ряд применения, в первую очередь, со светодиодами, поэтому предварительно перед процессом разработки следует изучить его особенности и принцип работы.

Что такое драйверы для светодиодов и зачем они нужны

Светимость полупроводникового лед-кристалла напрямую зависит от силы тока, проходящего через него. Нестабильность этого параметра, хаpaктерная для бытовой сети 220 В, приводит к быстрой деградации материала и выходу из строя светодиода. Поэтому и требуется для него драйвер. В его задачу входит преобразование параметров электрического тока в следующих направлениях:

  1. Стабилизация силы в точном значении выходных параметров.
  2. Задание амплитуды.
  3. Выпрямление из переменного в постоянный.

Обратите внимание! Величина напряжения на выходе из драйвера напрямую определяет способ и тип подключаемого светодиода. Если питание лампы идет от бытовой сети, параметр этого модуля должен быть на 220 В. Это нужно учитывать при покупке компонентов для светильника и стабилизатора, изготавливаемого своими руками.

Особенности драйвера светодиодов на 220 В

Главная особенность драйвера для светодиодов, питание которых осуществляется от 220 В, состоит в том, что он изменяет напряжение и предназначен для работы с электрическим током подобных хаpaктеристик. Поэтому для подключения лампочки не пригодны его низковольтные аналоги – например, от фонарика или автомобиля на 12 вольт. Кроме того, модели последнего типа могут включать в состав понижающий блок – трaнcформатор.

При изготовлении преобразователя своими руками следует знать его основные хаpaктеристики:

  1. Потрeбляемый ток. Должен совпадать со значением аналогичного параметра светодиодов, в противном случае они либо не будут выдавать полной яркости, заложенной производителем, либо перегорят.
  2. Мощность. Эта хаpaктеристика выражается в ваттах и равняется суммарной мощности всех led-узлов схемы.
  3. Напряжение на выходе. Находится в прямой зависимости от способа подключения и количества лед-элементов и падения напряжения на них – рассчитывается из суммарного их значения.
Читайте так же:
Освещение с самонесущими изолированными проводами

Расчет мощности при выборе ленты из последовательно соединенных светодиодов позволяет правильно подобрать драйвер для питания подсветки от 220 В. Итоговое значение равняется сумме данного параметра всех элементов плюс 25% (запас на возможную перегрузку). Например, в лед-полоске 20 элементов по 0,5 Вт каждый, общее значение составит 10W. Однако на пpaктике лучше купить или изготовить своими руками прибор на 12-13 ватт.

Теория питания светодиодных ламп от 220В

Лэд-лампа, как правило, представляет собой набор прострaнcтвенно расположенных в определенной композиции небольших, но достаточно мощных светодиодов (3,3 вольт и 1 ватт). Чтобы изготовить своими руками замену стандартной лампочке накаливания в 70-80 Вт, потребуется дюжина недорогих лед-элементов. Однако бытовая сеть 220 В имеет для них избыточные параметры.

Поэтому потребуется понизить амплитуд и силу, а также трaнcформировать переменный электрический ток в постоянный. Для этого понадобится драйвер, для изготовления своими руками которого применяется делитель напряжения на емкостной или резисторной нагрузке, а также стабилизаторы.

Самый простой стабилизатор напряжения, сделанный своими руками

Если у вас нет желания покупать готовое устройство, тогда стоит узнать, как сделать простенький стабильник самому. Импульсный стабилизатор в авто сложно изготовить своими руками. Именно поэтому стоит присмотреться к подборке любительских схем и конструкций линейных стабилизаторов напряжения. Самый простой и распространенный вариант стабильника состоит из готовой микросхемы и резистора (сопротивления).

Сделать стабилизатор тока для светодиодов своими руками проще всего на микросхеме LM317. Сборка деталей (см. рисунок ниже) осуществляется на перфорированной панели или универсальном печатном плато.

Cтабилизатор напряжения 12 вольт для светодиодов в авто своими руками

Устройство позволяет сохранить равномерное свечение и полностью избавить лампочки от моргания.

Схема 5 амперного блока питания с регулятором напряжения от 1,5 до 12 В.

Cтабилизатор напряжения 12 вольт для светодиодов в авто своими руками

Для самостоятельной сборки такого устройства понадобятся детали:

  • плато размером 35*20 мм;
  • микросхема LD1084;
  • диодный мост RS407 или любой небольшой диод для обратного тока;
  • блок питания, состоящий из транзистора и двух сопротивлений. Предназначен для отключения колец при включении дальнего или ближнего света.
Читайте так же:
Экономическая плотность тока для кабелей из сшитого полиэтилена

При этом светодиоды (в количестве 3 шт.) соединяются последовательно с токоограничивающим резистором, выравнивающим ток. Такой набор, в свою очередь, параллельно соединяется со следующим таким же набором светодиодов.

Сборка стабилизатора для светодиодов в авто — необходимые детали

Этот проект абсолютно несложный, его с легкостью сможет повторить любой автомобилист.

Необходимые детали

Все что понадобится:

  • микросхема — линейный стабилизатор напряжения L7812;
  • пару клемм;
  • пара конденсаторов 100n;
  • кусок текстолита для платы;
  • термоусадочная трубка.

Так что делают стабилизаторы, зачем нужны?

Как вы наверное уже догадались, они просто стабилизируют напряжение и не дают ему превышать выставленный вами порог. Сейчас есть два варианта:

  • Не регулируемый, который просто стабилизирует на 12В
  • С регулировкой, здесь вы можете вручную выставить нужное напряжение от 0,8 до 20В

Регулировка

Таким образом мы просто ставим верхний порог до 12, а я вам советую до 11,8В и светодиоды будут защищены от перепадов в бортовой сети. Срок службы увеличивается в разы (потому как нет преждевременной «деградации») то есть износ идет минимальный.

11.9В

Конечно, сейчас есть много различных методов ограничение своими руками, многие ставят резисторы и прочее в разрыв, но зачастую работает это не так эффективно, да и «колхоз-колхозный» это!

Опять же для людей, которые не дружат с электроникой и паяльником, покупные стабилизаторы будут просты и понятны.

Примеры схем включения стабилизатора LM317

Типовые схемы включения микросхемы приведены в даташите. Стандартное применение — стабилизатор с фиксированным напряжением — рассмотрен выше.

Схема включения LM317 с переменным резистором R2.

Если вместо R2 установить переменный резистор, то выходное напряжение регулятора можно оперативно регулировать. Надо учитывать, что потенциометр будет слабым местом в схеме. Даже у переменных резисторов хорошего качества место контакта движка с проводящим слоем будет иметь некоторую нестабильность соединения. На практике это выльется в дополнительную нестабильность выходного напряжения.

Читайте так же:
Провод usb это кабель айфона

Схема включения LM317 с двумя диодами D1 и D2.

Для защиты производитель рекомендует включить два диода D1 и D2. Первый диод должен защищать от ситуации, когда напряжение на выходе будет выше входного. На практике это ситуация крайне редкая, и может возникнуть только если со стоны выхода есть другие источники напряжения. Производитель отмечает, что этот диод также защищает от случая короткого замыкания на входе – конденсатор С1 в этом случае создаст разрядный ток противоположной полярности, что приведет микросхему к выходу из строя. Но внутри микросхемы параллельно этому диоду стоит цепочка из стабилитронов и резисторов, которая сработает точно также. Поэтому необходимость установки этого диода сомнительна. А D2 в такой ситуации защитит вход стабилизатора от тока конденсатора С2.

Схема включения LM317 с транзистором.

Если параллельно R2 поставить транзистор, то работой стабилизатора можно управлять. При подаче напряжения на базу транзистора, он открывается и шунтирует R2. Напряжение на выходе уменьшается до 1,25 В. Здесь надо следить, чтобы разница между входным и выходным напряжением не превысила 40 В.

Схема включения микросхемы LM317 с конденсатором, включенным параллельно переменному резистору.

Вредное воздействие контакта потенциометра на стабильность выходного напряжения можно уменьшить подключением параллельно переменному сопротивлению конденсатора. В этом случае защитный диод D1 не помешает.

Схема включения LM317 с внешним транзисторм.

Если выходного тока стабилизатора не хватает, его можно умощнить внешним транзистором.

Схема стабилизатора тока на LM317.

Из стабилизатора напряжения можно получить стабилизатор тока, включив LM317 по такой схеме. Выходной тока рассчитывается по формуле I=1,25⋅R1. Подобное включение часто используется в качестве драйвера для светодиодов – LED включается в качестве нагрузки.

Схема импульсного блока питания на LM317.

Наконец, необычное включение линейного стабилизатора – на его основе создана схема импульсного блока питания. Положительную обратную связь для возникновения колебаний задает цепь C3R6.

Микросхема LM317 имеет значительное количество слабых сторон. Но искусство создания схем и состоит в том, чтобы, используя плюсы стабилизатора, обходить недостатки. Все минусы микросхемы выявлены, даны советы по их нейтрализации. Поэтому LM317 пользуется популярностью у создателей профессиональной и любительской радиоаппаратуры.

Читайте так же:
Msd3663 t5c1 уменьшить ток подсветки

Описание характеристик, назначение выводов и примеры схем включения линейного стабилизатора напряжения LM317

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

Описание характеристик, назначение выводов и примеры схем включения линейного стабилизатора напряжения LM317

Как работает микросхема TL431, схемы включения, описание характеристик и проверка на работоспособность

Описание характеристик, назначение выводов и примеры схем включения линейного стабилизатора напряжения LM317

Режимы работы, описание характеристик и назначение выводов микросхемы NE555

Описание характеристик, назначение выводов и примеры схем включения линейного стабилизатора напряжения LM317

Что такое диодный мост, принцип его работы и схема подключения

Описание характеристик, назначение выводов и примеры схем включения линейного стабилизатора напряжения LM317

Что такое выпрямитель напряжения и для чего нужен: типовые схемы выпрямителей

Сообщение от Arhangel

Остальное все фигня )
А ваша схема вообще отстой. Это стабилизатор напряжения а не тока.

да я уже запутался что мне надо. Вернее надо чтобы диоды горели почти вечно
Где то читал что диодам надо стабилизировать ток, где то делают стабы напряжения.
http://invent-systems.narod.ru/LM317.htm тут про ток написано.
Про диод:
Светодиод SMD 1210, цвет белый холодный.
Размеры: 3,5 х 2,8 х 1,9 мм
Рабочее напряжение: 3,0-3,2 В
Номинальный ток: 20 мА
Рассеиваемая мощность: 100 мВт
Цветовая температура: 9000-12000 K
Яркость свечения: 1500-1716 мКд
Угол свечения: 120°
Рабочая температура: -40° до 85°C

Вообщем в кольце на каждые 3 диода стоит резистор (если я правильно понимаю, что это резистор) я даже резал кольцо каждые 3 диода (кратно 3) и оно работает.

Ну вообщем эта вся информация. Заказать на сайте если регулируемый то опять надо паять под мои 12В я в этом ваще не шарю.
HELP

  • Просмотр профиля
  • Сообщения форума

Banned Паша Разбег по полосе Паша Разбег по полосе Паша Разбег по полосе Паша Разбег по полосе Паша Разбег по полосе Паша Разбег по полосе Паша Разбег по полосе Паша Разбег по полосе Паша Разбег по полосе Паша Разбег по полосе Паша Разбег по полосеРегистрация 16.05.2006 Адрес Чухаревка Сообщений 3,322 Поблагодарил(а) 1,128 Получено благодарностей: 549 (сообщений: 391).

Мощность источника питания

Мощность источника питания зависит от мощности суммарной нагрузки всех подключенных устройств. Все блоки питания имеют некоторый предел допустимой мощности, при превышении которой нарушается стабильность работы или возникает перегрев. Поэтому мощность нагрузки должна быть ниже максимально допустимой у блока питания. Запас по мощности источника может быть сколько угодно велик, растет только его масса и стоимость. Но это касается только блоков питания старого типа, в схемах которых используются понижающие трансформаторы. Современные импульсные блоки питания имеют ограничение по минимальному току нагрузки. Это также следует учитывать при проектировании осветительной сети.

Читайте так же:
Светодиодная подсветка столешницы с розетками

То же самое относится и к драйверам. Принцип стабилизации тока подразумевает его стабильность при различных значениях выходного напряжения. Например, лампа на 12 В мощностью 1 Вт, потребляет ток 0.83 А (Закон Ома). Такой же ток должен выдавать драйвер. При подключении к нему этой лампы на выходе источника будет 12 В. Используя две таких лампы, соединенных последовательно, при том же потребляемом токе можно увидеть на выходе блока уже 24 В. И так далее, пока не наступит ограничение выходного напряжения. Тогда, соответственно, уже упадет и ток. Подключать параллельно несколько ламп к драйверу нельзя, по той причине, что выходной стабилизированный ток, поделится пропорционально между всеми потребителями.

Сложность проектирования освещения с драйверами и невозможность изменения количества подключенных приборов ограничивает их использование. А вот при выполнении наружного освещения, в диапазоне температур от минусовых до плюсовых, без стабилизаторов тока не обойтись.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector