Shik-v-dom.ru

Шик в Дом
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема Подключения Трехфазного Двигателя

Схема Подключения Трехфазного Двигателя

Причем большее напряжение для схемы подключения звездой, а меньшее — для треугольника.

Ограничивайте доступ посторонних к монтажу до его завершения. Она является самой простой и безотказной.
Как подключить трехфазный двигатель через магнитный пускатель.

Пишите комментарии, буду рад прислушаться к вашему мнению.

К одной врезают в разрыв конденсаторы: рабочие и пусковые. Каждый из них выбирается в соответствии с моделью агрегата и конкретными условиями эксплуатации.

Номинальная мощность указывается на металлической табличке на корпусе мотора. Приблизительно можно сказать, что двигатель, рассчитанный на трехфазное питание, при включении в однофазную сеть потеряет от 30 до 50 процентов мощности.

Полярность 3-й фазы определяют путем переключения вольтметра, изменения положения трансформатора на другую обмотку. Если для примера, двигатель на 1,5 киловатта, наибольший ток 3 ампера, то автомат нужен минимум на 4 ампера.

Очень сложное соединение требует навыков и не рекомендуется к реализации новичками.

Подключение электродвигателя на 220В треугольником и звездой Демонстрация работы Какой вид лучше

Однофазные и трехфазные

Чтобы правильно понимать предмет обсуждения, который объясняет подключение двигателя 380 на 220 вольт, необходимо разобраться, в чем лежит принципиальное отличие таких агрегатов. Все трехфазные двигатели являются асинхронными. Это означает, что фазы в нем подключены с некоторым смещением. Конструктивно двигатель состоит из корпуса, в который помещена статическая часть, которая не вращается, ее называют статором. Также есть вращающийся элемент, который называется ротором. Ротор находится внутри статора. На статор подается трехфазное напряжение, каждая фаза по 220 вольт. После этого происходит образование электромагнитного поля. Из-за того, что фазы находятся в угловом смещении, появляется электродвижущая сила. Она и заставляет ротор, который находится в магнитном поле статора вращаться.

Однофазные асинхронные агрегаты имеют немного иной тип подключения, т. к. питаются от сети 220 вольт. В ней есть только два провода. Один называется фазным, а второй нулевым. Чтобы запуститься, двигателю необходимо иметь только одну обмотку, к которой подключается фаза. Но только одной будет мало для пускового импульса. Поэтому присутствует еще она обмотка, которая задействована во время пуска. Чтобы она выполнила свою роль, она может быть подключена через конденсатор, что бывает чаще всего, или кратковременно замыкаться.

Управление асинхронным двигателем

Прямое подключение к сети питания

Использование магнитных пускателей позволяет управлять асинхронными электродвигателями путем непосредственного подключения двигателя к сети переменного тока.

С помощью магнитных пускателей можно реализовать схему:

  • нереверсивного пуска: пуск и остановка;
  • реверсивного пуска: пуск, остановка и реверс.

Использование теплового реле позволяет осуществить защиту электродвигателя от величин тока намного превышающих номинальное значение.

Нереверсивная схема

Нереверсивнпя схема подключения трехфазного асинхронного двигателя через магнитный пускатель

Нереверсивная схема подключения трехфазного асинхронного электродвигателя к трехфазной сети переменного электрического тока через магнитный пускатель
L1, L2, L3 — контакты для подключения к сети трехфазного переменного тока, QF1 — автоматический выключатель, SB1 — кнопка остановки, SB2 — кнопка пуска, KM1 — магнитный пускатель, KK1 — тепловое реле, HL1 — сигнальная лампа, M — трехфазный асинхронный двигатель

Читайте так же:
Электрическая схема подключение электрического выключателя

Реверсивная схема

Реверсивная схема подключения трехфазного асинхронного двигателя через магнитные пускатели

Реверсивная схема подключения трехфазного асинхронного электродвигателя к трехфазной сети переменного электрического тока через магнитные пускатели
L1, L2, L3 — контакты для подключения к сети трехфазного переменного тока, QF1 — автоматический выключатель, KM1, KM2 — магнитные пускатели, KK1 — тепловое реле, Mм — трехфазный асинхронный двигатель, SB1 — кнопка остановки, SB2 — кнопка пуска «вперед», SB3 — кнопка пуска «назад» (реверс), HL1, HL2 — сигнальные лампы

Частотное управление асинхронным электродвигателем

Для регулирования скорости вращения и момента асинхронного двигателя используют частотный преобразователь. Принцип действия частотного преобразователя основан на изменении частоты и напряжения переменного тока.

Функциональная схема частотно-регулируемого привода

    В зависимости от функционала частотные преобразователи реализуют следующие методы регулирования асинхронным электродвигателем:
  • скалярное управление;
  • векторное управление.

Скалярное управление является простым и дешевым в реализации, но имеет следующие недостатки — медленный отклик на изменение нагрузки и небольшой диапазон регулирования. Поэтому скалярное управление обычно используется в задачах, где нагрузка либо постоянна, либо изменяется по известному закону (например, управление вентиляторами).

Скалярное управление асинхронным двигателем с короткозамкнутым ротором с датчиком скорости

Скалярное управление асинхронным двигателем с датчиком скорости

Векторное управление используется в задачах, где требуется независимо управлять скоростью и моментом электродвигателя (например, лифт), что, в частности, позволяет поддерживать постоянную скорость вращения при изменяющемся моменте нагрузки. При этом векторное управление является самым эффективным управлением с точки зрения КПД и увеличения времени работы электродвигателя.

Среди векторных методов управления асинхронными электродвигателями наиболее широкое применение получили: полеориентированное управление и прямое управление моментом.

Полеориентированное управления трехфазным асинхронным электродвигателем по датчику положения

Полеориентированное управления асинхронным электродвигателем по датчику положения ротора

Полеориентированное управление позволяет плавно и точно управлять параметрами движения (скоростью и моментом), но при этом для его реализации требуется информация о направлениии вектора потокосцепления ротора двигателя.

    По способу получения информации о положении потокосцепления ротора электродвигателя выделяют:
  • полеориентированное управление по датчику;
  • полеориентированное управление без датчика: положение потокосцепления ротора вычисляется математически на основе той информации, которая имеется в частотном преобразователе (напряжение питания, напряжения и токи статора, сопротивление и индуктивность обмоток статора и ротора, количество пар полюсов двигателя).

Полеориентированное управления трехфазным асинхронным электродвигателем без датчика положения ротора

Полеориентированное управления асинхронным электродвигателем без датчика положения ротора

Прямое управление моментом имеет простую схему и высокую динамику работы, но при этом высокие пульсации момента и тока.

Схема включения трёхфазного электродвигателя на 220В

Трёхфазные моторы предназначаются для подключения к сети, имеющей также три выхода фаз. При работе от однофазного питания, выдаваемая агрегатом мощность будет на 30% ниже установленной. Кроме того, далеко не каждый трёхфазник подходит для однофазной цепи. Имеются также и различия в схемах включения таких электромоторов в 220-вольтную сеть. Но в быту далеко не всегда имеется возможность запитать мотор от трёхфазной проводки. Непосредственно к жилым домам и в квартиры, согласно стандартам СНиП, обычно не подводится 380В.

Электродвигатели с возможностью подключения и к двум типам электрической цепи, имеют различные технические характеристики, касающиеся рабочего напряжения. От этого зависит схема их подключения к 220В, и показатели потери рабочих мощностей. Установить, как подключить определённый тип мотора, можно по обозначению на шильдике корпуса:

Читайте так же:
Makel колодка удлинителя 3 гнезда с выключателем
ОбозначениеТип подключенияПотери мощности
127/220«звезда»30%
220/380«треугольник», «звезда»30%
380/660«треугольник»70%

В последнем случае, при подключении трёхфазного двигателя к однофазной цепи потеря составит 2/3 от установленной мощности. Поэтому, моторы, с обозначением 380/660 запитывать от 220 вольт, хотя и возможно, но абсолютно нецелесообразно. Для подключения двигателя к однофазной цепи используются два варианта:

  1. С помощью преобразователя частот. Данный прибор способен преобразовывать одну фазу, имеющуюся в сети 220-вольтовой сети, в три фазы с таким же напряжением. Однако, вследствие высокой стоимости преобразователя, в быту такой вариант используется редко.
  2. Посредством конденсатора. Такой метод более распространён из-за своей простоты и доступности. Именно его подробнее рассмотрим далее.

Подключение трёхфазного электродвигателя потребует использования конденсаторов для переменного тока. Без них электричество от одной фазы будет проходить по обмоткам, но вращения ротора не происходит. Чтобы создать смещение фазы, получить крутящий момент магнитного поля, к одной из обмоток подключаются конденсаторы. Важный момент – использовать конденсаторы постоянного тока для переменной сети нельзя, из-за высокой вероятности их взрыва в процессе работы.

Всего в схеме присутствуют два их типа: С1 – пусковой, и С2 – рабочий. Номинальное напряжение у каждого из них должно быть не менее 300В. В идеале, лучше взять устройства с ещё большим показателем – свыше 350В. В продаже можно встретить конденсаторы, специально предназначаемые для запуска электродвигателя. Они имеют соответствующее обозначение, и использовать их как рабочие запрещено. Минимально необходимая ёмкость конденсаторов зависит от мощности электродвигателя, и показана в таблице в микрофарадах:

Мощность двигателя0,4 кВт0,6 кВт0,8 кВт1,1 кВт1,5 кВт2,2 кВт
Ёмкость С1 (пускового) в номинальном режиме80120160200250300
Ёмкость С1 (пускового) в недогруженном режиме2035456080100
Ёмкость С2 (рабочего) в номинальном режиме406080100150230
Ёмкость С2 (рабочего) в недогруженном режиме25406080130200
Читайте так же:
Однолинейная схема вакуумный выключатель

Сама схема подключения трёхфазных электродвигателей с использованием конденсаторов, как в варианте «звезды», так и «треугольника», будет выглядеть весьма просто:

Схема подключения трёхфазного двигателя

Для управления пусковым конденсатором, предназначенного для страгивания с места и разгона 3-х фазного двигателя, используют выключатель. На схеме, представленной выше, он обозначен словом «Разгон». После набора мотором необходимых оборотов и выхода его на рабочий режим, кнопка управления отключается. При наличии достаточных навыков в обращении с электротехникой, ручное управление можно заменить на автоматическое реле, либо на таймер отключения.

Подключение трехфазного двигателя к сети 380В

Различают две базовые схемы (видео и схемы в следующем подразделе статьи):

  • треугольник,
  • звезда.

Преимущество соединения треугольником – работа на максимальной мощности. Но при включении электродвигателя в намотках продуцируются высокие пусковые токи, опасные для техники. При подключении звездой пуск мотора плавный, поскольку токи при нем низкие. Но достичь максимальной мощности при этом не получится.

В связи с вышесказанным двигатели при питании от 380 Вольт соединяют только звездой. Иначе высокий вольтаж при включении треугольником способен развить такие пусковые токи, что агрегат выйдет из строя. Но при высокой нагрузке выдаваемой мощности может не хватать. Тогда прибегают к хитрости: запускают двигатель звездой для безопасного включения, а затем переключаются с этой схемы на треугольник для набора высокой мощности.

Треугольник и звезда

Перед тем, как рассмотрим эти схемы, условимся:

  • У статора есть 3 обмотки, у каждой из которых – по 1 началу и по 1 концу. Они выведены наружу в виде контактов. Поэтому для каждой намотки их 2. Будем обозначать: обмотка – О, конец – К, начало – Н. На схеме ниже 6 контактов, пронумерованных от 1 до 6. Для первой обмотки начало – 1, конец – 4. Согласно принятым обозначениям это НО1 и КО4. Для второй обмотки – НО2 и КО5, для третьей – НО3 и КО6.
  • В электросети 380 Вольт 3 фазы: A, B и C. Их условные обозначения оставим прежними.

Схема подключения проводов к вводной коробке двигателя

При соединении обмоток электродвигателя звездой сначала соединяют все начала: НО1, НО2 и НО3. Тогда к КО4, КО5 и КО6 соответственно подают питание от A, B и C.

При подключении асинхронного электродвигателя треугольником каждое начало соединяют с концом намотки последовательно. Выбор порядка номеров обмоток произвольный. Может получиться: НО1-КО5-НО2-КО6-НО3-КО2 .

Соединения звездой и треугольником выглядят так:

3

Смотрите видео, которое поможет разобраться в способах соединения намоток.

Переходная схема

Для плавного включения электродвигателя 380 в 3х фазную электросеть и высокой отдачи мощности запускают его звездой. После разгона он автоматически переключается со схемы и начинает работать треугольником. Недостаток метода – невозможность смены направления вращения вала.

Читайте так же:
Селективность расцепителей автоматических выключателей

Переходная схема подразумевает подключение через магнитный пускатель (смотрите также видео). Таких понадобится 3:

  1. Первый на схеме обозначен МП1 (магнитный пускатель 1). Он соединяет начала намоток статора НО1, НО2 и НО3 с фазами сети напряжением 380 Вольт: А, В и С.
  2. Второй пускатель – МП2. Он соединяет концы обмоток КО4, КО5 и КО6 с фазными проводами А, В и С треугольником.
  3. Третий пускатель – МП3. Необходим для соединения концов намоток с 3х фазной сетью звездой.

4

Внимание! Пускатель 2 и 3 нельзя включать одновременно, потому что возникнет короткое замыкание. В связи с этим произойдет защитное отключение на аварийном щитке. Чтобы случайно пускатель 2 не включился одновременно с 3, необходима электрическая блокировка. Тогда третий магнитный пускатель включится только после того, как выключится второй. И наоборот.

  1. Включается первый пускатель;
  2. Срабатывает реле времени, которое включает третий магнитный пускатель (пуск звездой);
  3. Через заданное время реле отключает третий и включает второй пускатель (работа треугольником).

Работу прекращают через размыкание МП1. При повторном запуске пункты 1-3 повторятся.

Принцип настройки преобразователя частоты

Настройка преобразователя выполняется путем изменения значений каждого из 70 параметров. Полное описание функций и задаваемых значений указаны в паспорте устройства. Для корректировки значений нужно войти в меню выбора параметров, нажимая кнопку «Режим» до тех пор, пока на дисплее не отобразится Р—. Затем нужно нажать «ввод» и с помощью стрелок «вверх» и «вниз» выбрать номер нужного параметра, снова нажать «ввод», установить нужное значение и нажать «ввод» еще раз для сохранения.

Использование преобразователя частоты дает некоторые дополнительные возможности. Например, вы можете использовать функцию позиционирования, передавая на преобразователь данные с датчика положения ворот. Это позволит использовать устройство в режиме шагового двигателя. Он плавно разгонит ворота и мягко остановит их в крайней точке, запомнив оба крайних положения полотна. Это более удобная и продвинутая замена системы концевых выключателей. Требуется только установить счетчик типа «квадратурный энкодер» на вал приводного механизма.

Счетчик имеет два провода питания, которые подключаются к клеммам +12V и GND, а также два сигнальных провода, которые подключаются на клеммы DI5 и DI6. Включение функции позиционирования производится присвоением значения «2» параметру 60. Далее нужно задать значение «1» параметру 61, чтобы установить нужный тип датчика. Затем, меняя значения параметров 62 и 63, определить соотношение между количеством импульсов и пройденным расстоянием.

К примеру, вал двигателя может сдвигать ворота на 25 см за один оборот, а энкодер, закрепленный на валу, выдает за один оборот 200 импульсов. Это значит, что на каждые 1000 мм, заданных в значении параметра 62, будет приходиться по 800 импульсов датчика, устанавливаемых в значении параметра 63.

Читайте так же:
Разъемы для концевых выключателей

Параметр 66 определяет тип торможения, ему нужно присвоить значение «1». Параметр 67 определяет частоту вращения двигателя, до которой будет снижена максимальная рабочая скорость, а значение параметра 68 определяет требуемую длину тормозного пути. Настроив указанные параметры, вы можете выйти в главное меню и указать расстояние, которое ворота должный пройти, в миллиметрах. После выполнения задания счетчик обнулится и будет готов к новому циклу, отсчет ведется в обоих направлениях.

Номинальная скорость вращения двигателя задается значением выходной частоты (Гц) в главном меню программы. Вы можете изменять ее в режиме реального времени и увеличивать до тех пор, пока механизм передачи сохраняет стабильную работу. Не забывайте также, что слишком большой разгон не позволит преобразователю эффективно снизить скорость в конце пути. Время разгона привода до максимальной скорости задается значением в секундах параметра 10.

Схема подключения однофазного двигателя через конденсатор

При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

Схема подключения двигателя через конденсатор

  • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
  • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
  • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

4. Определяем необходимой ток защиты

Номинальный ток и номинальная мощность электродвигателя ограничены его нагревом. Предел рабочей температуры определяется классом изоляции. Максимальная температура обмоток двигателей с низшим классом изоляции (Y) составляет 90°С. На это значение и нужно ориентироваться.

Для определения тока защиты включаем двигатель с номинальной нагрузкой на валу через мотор-автомат с током уставки, определенном на предыдущем шаге. После подачи питания автомат должен отработать по перегрузке. Далее увеличиваем его уставку, при необходимости подключаем автомат с другим диапазоном уставки.

В итоге опытным путем определяем номинал мотор-автомата, уставка которого обеспечивает продолжительную работу двигателя на номинальной нагрузке.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector